

Sensor Testing

Flora Zhou Mentor: Jordan Dowdy Research Experience for Undergrads 07/17/2024

NEXT GEN SYSTEMS

- □ Project: OctoCan
- □ Final Goal:
- □ To use skin (pressure) sensors to manipulate the position of the robot arm
- □ Issues:
- Patch 1 not recognize
- Zero division error
- □ Why sensor testing:
- □ Make sure each cell works correctly
- □ Calculate "sensitivity" of each sensor

Introduction

What's the	challenging part for calculating positions?	
Target Range: 0-1000		
x: c0, c1, c2: x': b:	recorded (actual) data coefficients for transformation data after transformation baseline calibration (noise) $x' = c_0 + c_1 (x - b) + c_2 (x - b)^2$	
I HOWEVER:		
That's too complicated.		

Introduction

What's the challenging part for calculating positions?		
Target Range: 0-1000		
 The closer c1 to 0, the more sensitive the cell Linear 		
$x' = c_1(x - b)$		
target data = sensitivity coeffienct * (recorded data - noise)		
Example: $1000\!=\!c_1(200\!-\!100)$		

Sensor Testing

Patch 5: set range from 0- 1000 and when I pressed cell 8

- Get the average noise in 4 seconds: click TARE
- Determine if the cell gives negative feedback
- □ Auto-tuning / adjust manually
- Blue bubble:
- center of pressure
- Make sure the min & max keeps from 0 - 1000 after transformation

Patch 1

Patch 1: short circuit Many cells not working
Sensor damaged SPI interface of the ADC is probably damaged
(Credit goes to Dr. Roshi Zhang)

Future Plan

Replace the sensor on patch 1 & Try to fix it	
Start with subject testing at the end of this week (Those c1 values are recorded, saved, and will be used in the code)	